

And eosinophilia after a stay in the tropics ?

Rembert Mertens

October 24th, 2013 Joint Symposium with the Scientific Study Group for Travel medicine

Universitair Ziekenhuis Brussel

Should we investigate ?

- Diagnosis of tropical conditions causing eosinophilia is important:
 - → Almost all helminths can occasionally cause serious pathology
 - \rightarrow Almost all helminths are easily treated
- Untargeted investigation can be
 - \rightarrow Time consuming
 - \rightarrow Frustrating for physician & patient
 - \rightarrow Expensive

5

Should we investigate ?

- Wide variety of causes:
 - → Allergic illness
 - \rightarrow Skin diseases
 - \rightarrow Malignant conditions
 - \rightarrow Hematological disorders
 - \rightarrow Medication use
 - \rightarrow Parasitic infection

→ ...

How to investigate?

(>

0

- Identifying / ruling out as many important diagnoses on the 1st occasion
- Taking account of the prevalence of helminth infections in area of travel

How to define eosinophilia

- Normal subjects < 350/mL (1-3%)
- Daytime fluctuation (cortisol) up to 40%
- Absolute more reliable than percentage
- Degree of eosinophilia:
 - \rightarrow Mild : up to 1500/mL
 - \rightarrow Moderate: 1500-5000/mL
 - \rightarrow Severe > 5000/mL

Common finding ?

- 5% of travellers returning from tropics?
- 8%-10% in asymptomatic returning travellers
- Related to destination:

Schulte C: Diagnostic significance of a Whitty CJ: Utility of history, examinati Tran Med Int Health 2000;5:818-23

- \rightarrow 48% from Africa vs 31% of all desinations
- \rightarrow highest RR 2,95 for West- and central-Africa
- \rightarrow Lowest RR for indian subcontinent and Latin America

ce of blood eosinophilia in returning travelers *Clin Inf Dis* 2002;34:407-11 mination and laboratory tests in screening those returning to Europe from the tropics for parasitic infecti

Eosinophilia \neq helminth

- 36% definite diagnosis (19% helminth)
- PPV 14% for helminth infection
- Up to 39%?
- Diagnostic value of eosinophilia alone is limited

Uschulte C: Diagnostic significance of blood eosinophilia in returning travelers Clin Inf Dis 2002;34:407-11 Libman MD: Screening for schistosomiasis, filariasis an strongyloidasis among expatriates returning from tropics. Clin Infect D

Symptoms

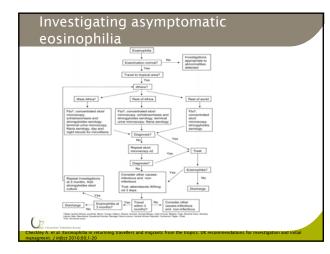
- Asymptomatic 21-30%
- Gastro-intestinal symptoms 27%
- Skin related symptoms 15%
- Fatigue, non-specific symptoms 37%
- Difference between traveller & immigrant:
- Up to 80% have asymptomatic intestinal helminths
- 5

Travel history

- "Unde venis? "
- When did you travel, how long, when did you return?
- What did you do ?
- Exposure:
 - \rightarrow Drinking untreated water / unpasteurised milk
 - \rightarrow Undercooked fish or meat
 - \rightarrow 'Fresh water' swimming
 - \rightarrow Bare foot walking
 - \rightarrow Contact with locals?
- Symptoms in other travellers ?

0

Timing


(>

- Eosinophilia may be transient
 → Tissue migration phase
 - \rightarrow Prepatent period: no ova detectable
- Serological tests: 4-12 weeks after infection
 - \rightarrow Sometimes cross-reaction between tests

Investigating asymptomatic eosinophilia

- Common causes: intestinal helminths, schistosomiasis, strongyloides and filaria
- All travellers : (concentrated) stool examination, strongyloides serology
- Returning from Africa: + serology schisto and filaria, and urine analysis for ova *Schistosoma haematobium*
- Returning from West Africa: + serology filaria, (day-night) blood exam for filaria, skin snips (sero+)

Eosinophilia with symptoms

Fever • Katayama • Loeffler • Visceral larva migrans • Tropical pulmonary eosinophilia

CI symptoms Skin -Ascariasis - Filariasis - Gratostomiasis - Bilharzia - Larva migrans - Trichinella sp. - Anisakiasis - Anisakiasis - :...

Other • Paragonimiasis • S. Haematobium

Eosinophilia with fever

• Katayama fever - *Schistosoma* sp.

- \rightarrow Incubation 2-9 weeks
- → Africa
- \rightarrow Fresh water exposure: cercaria pentrate skin
- \rightarrow severe eosinophilia, fever, dry cough, urticarial rash
- → Low sensitivity of stool/urine exam and serology → Corticosteroids + praziquantel 40 mg/kg (repeat)

Eosinophilia with fever

• Loeffler's syndrome:

- \rightarrow Migration of larval stadia of nematodes
- \rightarrow Ascaris L., strongyloides, hookworms
- \rightarrow Incubation 1-2 weeks
- \rightarrow Fever, urticaria, wheezes, dry cough
- \rightarrow Clinical diagnosis, migratory infiltrates on XR
- \rightarrow Charcot-Leyden cristal
- → Albendazole 400 mg bd 3days

Eosinophilia with fever

- Visceral larva migrans acute toxocariasis
 → worldwide
 - \rightarrow Ingestion soil contaminated eggs *T.Canis T.catis*
 - \rightarrow Mostly children
 - $\rightarrow~$ Often asymptomatic, fever, wheezes, cough
 - $\rightarrow~$ Abdominal pain, HSM, urticarial rash
 - \rightarrow Serology
 - \rightarrow Albendazole 400 mg, steroids, antihistamine

Eosinophilia with fever

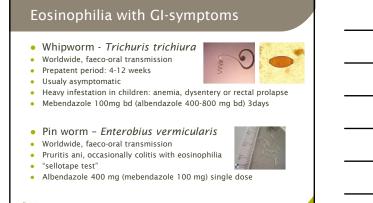
- Tropical pulmonary eosinophilia W.Bancrofti / B. Malayi
 - → Hypersensitivity reaction < lymphatic filarial worms
 - \rightarrow Fever, dry cough, dyspnea, wheezes
 - \rightarrow Severe eosinophilia, IgE, chest XR, PFT
 - $\rightarrow\,$ Serology +, blood microscopy –
 - \rightarrow DiEthylCarbamazine ± steriods
 - → Delayed or incomplete treatment : lymphatic damage and

Eosinophilia with GI-symptoms

- Ascariasis Ascaris lumbricoides
- World-wide , faeco-oral transmission
- Pre-patent period 2-3 months
- May present acutely: Loeffler's syndrome
- Asymptomatic, vague abdominal pain, diarrhea
- Obstruction (children), biliary obstruction
- Concentrated stool exam
- Albendazole 400 mg once (or mebendazole 100mg bd 3days)

Eosinophilia with GI-symptoms

- Strongyloidiasis Strongyloides stercoralis
- Incubation period: days to weeks for larva currens (or Loeffler's syndrome), 2 weeks later vague abdominal symptoms (diarrhea, bloating)
- Serology ! Low sensitivity of stool samples
- Ivermectin 200µg/kg once
- Hyperinfestation syndrome:
- Paralytic ileus , G-sepsis (<translocation across bowel wall)
- Often pulmonary involvement (larva ++ sputum and stools)


0

- Low or abscence of eosinophilia !
- Associated with steroids, chemo/malignancy, HTLV-1
- Broad-spectrum AB, ivermectin IV (duration?)

Eosinophilia with GI-symptoms

- Bilharzia Schistosoma mansoni (japonicum)
- S.Mansoni: Africa, Arabian peninsula, S-America
- S.Japonicum: China, Indonesia, Phillipines
- Swimmer's itch , Katayama fever
- Abdominal pain, diarrhea (heavy infection, dysentery)
- Serology (4-8 wks), stool exam (low sensitivity)
- Praziquantel 40mg/kg single dose
- Chronic infection: HSM, fibrosis, portal HT, esophageal varices (endoscopy, ultrasound)

UP.

Eosinophilia with GI-symptoms

- Trichinellosis Trichinella sp.
- Consumption of raw (undercooked) meat; outbreaks
- Worldwide (Eastern Europe, Russia, Argentina, China)
- Incubation: 7-30 days (enteral phase), 2-6 weeks (parenteral)
- Enteral phase: abdominal pain, N+V+D+, fever
- Parenteral phase:myalgia, weakness.
 - → Respiratory failure, facial/periorbital edema, conjunctivitis, rash
 → Severe presentation : meningo-encephalitis, myocarditis
- Creatinine kinase levels ↑, severe eosinophilia
- Serology , muscle biopsy

()

- Albendazole 400 mg 3 days
- 14 days severe disease (with prednisolone)

Eosinophilia with GI-symptoms

- Anisakiasis Anisakis spp.
- Worldwide (consumption raw/pickled seafood)
- Incubation 2-5 hours
- Acute severe abdominal pain, N+V+
- Rarely anaphylaxis
- Diagnosis usually at endoscopy, serology •
- Endoscopic (surgical) removal (or albendazol 400 mg)

Eosinophilia with GI-symptoms

• Fasciola hepatica / F. gigantica

- Worldwide (Middle East, SE Asia, Eastern Europe)
- Consumption of contaminated vegetation (intermediate encysted metacercaria) eg. watercress
- Incubation 3-12 weeks, prepatent period 3-4 months
- Acute phase: (month 3-5) fever, hepatomegaly with pain
- Chronic phase: biliary obstruction, cholecystitis, abcess (50% • asymptomatic) Diagnosis:
- → Acute phase : clinical, serology confirms later.
 → Chronic phase: serology, (stool microscopy), imaging (US or CT)
- Triclabendazole 10 mg/kg single dose

Eosinophilia with GI-symptoms

• Other causes:

- → Protozoa: Isospora bella, Dientamoeba fragilis, Toxoplasmosis
- → Tapeworm: Taenia saginata / T.Solium (cysticercosis)
- → Dwarf tapeworm: *Hymenolepsis nana*
- → Hookworms: Ankylostoma braziliensis, Necator americanus
- → Hydatid disease: Echinococcus granulosis, E. multilocularis
- → Angiostrongylus costaricensis
- → Liver flukes: clonorchis sinensis, Opisthorchis sp.
- \rightarrow ...
- U2_____

Eosinophilia with skin/musculoskeletal symptoms

- Cutaneous larva migrans
 → Characteristic migratory rash
 - $\rightarrow\,$ lvermectin 200 $\mu g/kg$ (or albendazole 400 mg od 3 days)
- Larva currens Strongyloides stercoralis
 - → Itchy, linear, urticarial rash
 → Usually trunk, upper legs, and buttocks
- Trichinellosis Trichinella spiralis
 → 2nd 'parenteral' phase: facial, periorbital edema, urticarial rash

• Schistosomiasis: 'swimmer's itch

myalgia

- → Itchy maculo-papular rash
- \rightarrow Often caused by *schistosoma* spp. of birds
- C

Eosinophilia with skin/musculoskeletal symptoms

- Onchocerciasis onchocerca volvulus
 - \rightarrow Near rivers, predominantly Africa
 - $\rightarrow\,$ Incubation 8-20 months $\rightarrow\,$ Diffuse pruritic dermatitis (legs and buttocks)
 - → 'leopard skin' in chronic cases
 - → Anterior chamber eye: keratitis, uveitis, choroidoretinitis
 - → Serology; skin snips, slip lamp exam
 - $\rightarrow~$ Ivermectin 200 $\mu g/kg$ repeated for months

Eosinophilia with skin/musculoskeletal symptoms

- Lymphatic filariasis W.bancrofti, B. malayi
 - \rightarrow incubation period: 1 to 16 months
 - → W.bancrofti: worldwide tropical, B. malayi: mainly Asia
 - \rightarrow Fever, lymphadenitis, lymphoedema
 - \rightarrow Non-immune travellers: fever, respiratory symptoms
 - \rightarrow Serology, microscopy 'night' blood (midnight)

Eosinophilia with skin/musculoskeletal symptoms

- Loiasis Loa Loa
 - \rightarrow Incubation 6 months to 6 years
 - \rightarrow West and Central Africa
- Migratory 'calabar' soft tissue swelling of limbs
- 10-20% cases: migrating worm across conjunctiva
- Serology, 'day' blood microscopy
- DiEthylCarbamazine

Eosinophilia with skin/musculoskeletal symptoms

- Gnathostomiasis Gnathostoma spinigerum
 - $\rightarrow\,$ Incubation only 3-7 days
 - \rightarrow SE Asia, usually outbreaks
 - $\rightarrow~$ Eating undercooked fish, chicken (frog, snake)
 - \rightarrow Intermittent subcutaneous swelling, prutitus
 - \rightarrow Occasionally eosinophilic meningitis, myelitis
 - → Clinical diagnosis, serology
 - \rightarrow Albendazole 400 mg bd 3 weeks

10

Eosinophilia with pulmonary symptoms

- Paragonimiasis Paragonimus sp.
 → Most cases SE Asia
 - \rightarrow Ingestion raw crab or crayfish

(>

- \rightarrow Abdominal pain, diarrhea, urticaria
- \rightarrow Pleuritic chest pain, pleural effusions, chronic
- cough, hemoptysis → Chest XR, Sputum analysis, serology
- \rightarrow Praziquantel 25 mg tds (2days)

Take home messages

- Eosinophilia is common in returning travellers
- Always investigate eosinophilia in a returning traveller
- Wide variety of causes
- Diagnostic value of eosinophilia alone has limited value

D	
1	

Take home messages

- About 1/3 asymptomatic
- Degree of eosinophilia
- Travel history !

Take home messages

- In all travellers stool exam, *strongyloides* serology
- Africa: include schisto/filarial serology
- West & Central Africa
 → Also include blood exam for microfilaria
- Investigate
 → Symptoms
 - \rightarrow Region of travel and prevalence of helminths
- 0

(>